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Reduction to quadratures of integrable generalisations of the 
Calogero system 

Marzenna Wojciechowska 
Faculty of Physics of Warsaw University, Institut of Theoretical Physics, 00-68 I Warsaw, 
ul. Hoia  69, Poland 

Received 24 January 1984 

Abstract. It is shown here that the Calogero system of three particles of equal or different 
masses, interacting in one-dimension via an arbitrary translationally invariant homogeneous 
potential of order -2 and confined by an external potential, is separable. An explicit 
solution is given for a case distinguished by the completely degenerate character of the 
motion. 

The classical Calogero system (Calogero 1969) of three interacting particles with 
equal masses and confined in a one-dimensional harmonic well is described by the 
Hamiltonian 

~ ,=(1 /2m)(p :+p:  + p : ) + g 2 [ ( x l  - x J - ~  + ( x * - x ~ ) - ~  + ( x ~ - x ~ ) - ~ ] + ~ o ~ ( x :  +x:+x:>. 
(1) 

This system is completely integrable and can be solved explicitly (Khandekar and 
Lawande 1972) in terms of circular functions through the separation of variables. The 
motion is strictly periodic since the Calogero system, as a completely degenerate system, 
has a total of five independent, integrals of motion that do not depend explictly on time. 

The integrability of the Calogero system is not only limited to the case of equal 
masses. For particles of different masses, it has been reduced to quadratures by Jacobi 
(1886). Both cases belong to a considerably larger class of integrable systems 
(Wojciechowski 1983) characterised by the Hamiltonians 

H I =  T + V _ , + g ( Z , ) + h ( X )  

H2 = T + V-, +f(I) 

where 

T =  (Pi +Pi + P : ) / 2 m ,  

I = ; (x:  + x: + x; ) ,  

x = x, + X I  +x3, 

Zl = $(x, - x2)2 + ( x ,  - x3), +(x, -X I ) * ]  

and by 

H 3 =  T ’ +  V - , + g ( I i ) + h ( X ’ )  

H4 = T‘ + V-,  +f(Z’) 
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where 

T ’ = p : / 2 m I  + p : / 2 m 2 + p : / 2 m , ,  X ’ =  m l x l  + m 2 x 2 + m , x 3  

r ’ = t ( m , x : + m 2 x : + m , x : > ,  

I ;  = [ m l m 2 ( x I  - x2)2 + m2m3(x2 - x3)2 + m 3 m l ( x 3  - x , ) ~ ] / ~ M ,  

M = m ,  + m2 + m,. 

The potential V-2 is here an arbitrary translationally invariant homogeneous function 
of order -2 .  The mass dependence of the Hamiltonians (4) and (5) is non-trivial since 
the simple canonical change of variables p ;  = pkm;’ l2 ,  x ;  = m j j 2 x k  destroys the transla- 
tional invariance of K 2 .  Note also that usually the natural Hamiltonian systems are 
integrable for very particular values of the masses (see e.g. Bountis et a1 1982) while 
here the masses are the parameters of the system. 

The sets of three independent commuting integrals of motion for systems (2) - (5)  
have been constructed by the group theoretic method (Wojciechowski 1983) but the 
way of solving them seems to be unknown. 

The particular feature of the integrals given by Wojciechowski is their quadratic 
(in momentum) character which strongly suggests the possibility of separating variables. 
Another hint in favour of the separability of the Hamiltonians (2) - (5)  is their depen- 
dence on arbitrary functions which happens, in practice, only for separable systems. 
However, the way of finding the adequate variables is not a trivial task. 

The aim of this paper is to construct the separation variables for all systems ( 2 ) - ( 5 )  
in order to reduce them to quadratures. To do this the general form of the potential 
V - 2  has to be found first. From the condition of translational invariance 

a V - , / a x ,  + a V _ , / a ~ , + a V - , / a x , = O  

we have K2 = D [ ( x ,  - x2) ,  ( x 2  - x , ) ] ,  where D is an arbitrary differentiable function of 
variables y ,  = x 1  - x 2  and y 2  = x2 - x 3 .  Further, by the homogeneity of the order - 2 ,  
the potential K 2  has also to satisfy the equation 

X ,  a v - , / a x ,  - t x 2  aV- , /ax ,  + x ,  i lV- , /ax,  = - 2 Y 2  

y ,  a@/ay, +y2  a o / a y 2  = - 2 ~  

which in the variables y , ,  y 2  reads 

and has as the general solution O ( y , ,  y 2 )  = y ; ’9 (y l / y2 )  where \I’ is an arbitrary differenti- 
able function of one variable. Thus we obtain V - 2  = (x2 - x , ) - ~ ~ Y ( ( x ,  - x 2 ) / ( x 2  - x3))  
and in the ‘cylindrical’ coordinates R, r, cp defined by 

( 6 )  

(7) 

( X I  + x2 - 2x3) R = f ( x ,  + x 2  f x , ) ,  x = 2-I’2(x1 - x 2 ) ,  = 6 - ’ / 2  

x = r sin cp, 

v - ~  = r - 2 2  sin-’(fr +cp)\Ir(-sin cp/sin(jr +cp)>. 

y = r cos cp 

we have 

The variable R is the coordinate of the centre of mass; r ’ = f [ ( x ,  - x 2 ) ’ +  
( x ~ - x ~ ) ~ + ( x ~ - x , ) ~ ]  measures the mean quadratic length, while cp is the phase of 
relative configuration of particles. In these variables the Hamiltonian ( 2 )  reads 

H 2  = k p i  +fp? + (1 / 2r’)p: + (1 / r’)F( c p )  + g(4r’) + h(3 R )  

and by the standard method of separation of the Hamilton-Jacobi equation (Landau 
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and Lifshitz 1960) we get three commuting functionally independent integrals of motion 

+ h(3 R )  = ER, + F(cp) = E,, f p S + g ( f r 2 ) + ( 1 / r 2 ) E ,  = E,  (8) 

So from the relations 3mR = p R ,  mi = p n  mr2+ = p q  we can immediately express in 
quadratures the quantities R( t ) ,  r ( t ) ,  and cp( t ) .  Similarly, by introducting the ‘spherical’ 
coordinates p, 8, cp defined by 

3 1 / 2 R  = p cos 8, r = p sin 8, 9’9 

(where p2 = x: +x: +x:) the Hamiltonian ( 3 )  can also be reduced to the separable form 

This has the three following independent commuting integrals of motion 

To find the proper separation variables for systems (4) and (5 ) ,  it is convenient to 
consider first the Calogero system with different masses and different coupling 
constants g,: 

(10) 
which is also interesting in itself. As one of the variables we take again the coordinate 
of the centre of mass 

( 1  1 )  R = M - ’ ( m , x ,  + m2xz + m3xJ) 

and, generalising formulae (6 ) ,  we assume 

x2 - x3 = a y  - ( p /  m2)x x , - x , = a y  f(Plm1)x XI - x2 = (XI - x3) - (x2 - x3) 
(12) 

where a and p are to be determined. We can find them by requiring M I X :  + m,x: + 
m,x: = x2 + y 2  + M R 2  as a natural generalisation of the identity x: + x i  + x: = 
x2 + y 2  1-3 R 2  satisfied by the coordinates (6). Then employing the identity 

mlm2(xl - ~ ~ ) ~ + m ~ m ~ ( x ~ - x ~ ) ’ + m ~ m , ( x ~ - x ~ ) ~  

= M(m,x :  + m2x: + m,x:) - (m,x,  + m2x2 + m3x3)’ 

we obtain a = [ M / m , ( m ,  +m2)]”’, p = [ m l m 2 / ( m l   VI^)]"^. In the modified ‘cylin- 
drical’ coordinates R, r, 9, defined by formulae ( 1  1) and (12) and by the relations 

x = r sin cp, y = r cos 9, 

the Hamiltonian ( I O )  reads 

+ g3 + tw2r2  s ~ ~ ~ M R ~  
[a cos Q + ( P / m , )  sin (p12 
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and the related integrals have the form 
1 2  

(15) 
(1/2M)p; +;w2MRz = ER, ZPV +F’(cp) = E,, 

ip5+iw2r2+(l/r2)E, = E, 

where F’(cp) denotes the term in the Hamiltonian (4) which depends only on cp. It is 
easy to see that the Hamiltonian (14) separates also in the modified spherical coordinates 
defined by formulae ( 1  I ) ,  ( 1  2) ,  (1 3) and by relations M ”’R = p cos 8, r = p sin cp. Then 

~ ~ = f p 2 p  +(1/2p2)pi +(1/2p2 sin2 qpZ, +( l /p2  sin2 e)F’((p) + I w  I 2 2  p . 

Only one of the integrals 

is independent of the integrals (15) because E, = E, +ER. So system (10) has four 
functionally independent integrals not depending explicitly on time (ER, E, E,, Eo), 
while system (1) has five. Nevertheless, it is suprising that the Calogero system with 
different masses is still partially degenerate since the arbitrariness of masses usually 
destroys integrability. 

Having introduced the modified cylindrical coordinates, we can easily see that the 
Hamiltonian (4) has three integrals given by formulae (8) with a minor difference that 
h depends on MR instead of 3R. Analogously the Hamiltonian (5) separates in the 
modified ‘spherical’ coordinates and its integrals are given by (9). 

In all cases (2)-(5) considered above, the motion of the system can be expressed 
in quadratures but the integrals to be performed are of an elliptic or more general 
type. However, for a particular potential 

V-Z(X,, x2, x3)= g2[(x1 -x2)-2 +(x2-x3)-2+(x3-xI)-21 

+j2[(xl + x2 - 2x3)-’ +(x2 +x, - ~ X J ~  +(x3 + xI - 2 ~ 2 ) - ~ ]  

+$w2(x:+x:+x:) (16) 

which generalises the Calogero potential in (1) all integrations can be performed 
explicitly in terms of circular functions and the motion is strictly periodic. This has 
not been difficult to presume since the spectrum of the corresponding quantum problem 
is equidistant (Wolfes 1974) as happens only in the systems with the highest possible 
symmetry. So we consider here system (1) with potential (16) for the case g2 > 0, fz > 0 
and w 2  > 0 to exclude the collapse of the particles and we adopt the ordering of particles 
x, > x2 > x j  which is preserved in time. The mass of the particles can be taken as equal 
to unity since momenta and the parameters f 2 ,  g2, w 2  can always be properly rescaled. 
This system has two equilibrium configurations corresponding in cylindrical coordin- 
ates (6) ,  (7) to R = 0, r = [(9g +3”2f)/3w]”2, cot 3(p1,2 = *[f/g ~ 2 7 ” ~ ] ” ~ .  These are 
asymmetric with respect to reflections in the origin because for cp + &r (i.e. for x2+ 
f(xl +x3)) the energy of the system goes to infinity and, therefore, the configuration in 
which the central particle is equidistant from two extreme particles is forbidden. So 
the physical motion can take place in two separate regions around the equilibrium 
points and the phase space splits into two simply connected components, 

The Hamiltonian of the system, expressed in ‘cylindrical’ coordinates, has the form 

H, = b p i  +ip;+(l /2r2)pt  +&02R2+iw2r2+f9g2(l/rz sin23cp)+bf2(1/r2 cos23cp) (17) 
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and the corresponding integrals are 

+;w2R2= ER, ip’ ,  +i9g2(l/sin2 347) +A f2(l/cos2 3 ~ )  = E,, 
I 2 + ’  2 2  ? p r  2w r +( l / r2)E,= E, 

From these integrals we find the equations of motion 

dR/dt  =($ER-w2R2)’/’, d r ld t  =(2E,-w2r2-2E,/r2)1/2, 

dq /d t  =(l/r2)(2E, -9g2/sin2 39  - f2/3 cos2 3 ~ ) ” ~  

and finally 

R(t)=($ER)l’Z(l/o) sin(w? +cl) 

r ( t ) = ( 1 / w ) [ ( E ~ - 2 E , w 2 ) 1 ’ 2  sin(2wt +C2)+E,] ’ / ’  

Er tan(wt + c;) 1 
2A 

cos3 39(t)=-(B2-4Af2)1’2 sin 

where A = 6E,, B = 6E, + f 2  -27g2 and CI ,  C2, C’,, Cl, are the constants of integration. 
The action-angle variables, defined as the integrals Iq = 1/27r f pq dq over one cycle of 
the motion of variable q, have here the form 

I R  = ERIW, I ,  = E,/2w -+(2E,)’”, I ,  =i(2E,)i /2-ig- f / 6  X3‘/2. 

Hamiltonian (17) expressed in these variables reads 

H, = w I R  +2wI, +6wI, +3gw +3-1 /2 f~ .  (18) 
It is worth noting that the basic frequency U, = dH,/aI, related to the variable Q is 
here twice as great as that for the Calogero system (1). This reflects the split of the 
phase space into two separate components. The additive term in the Hamiltonian (1 8) 
is equal to the minimal energy of the system in either of the equilibrium configurations. 
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